Nature-Culture

Bananas!

 The still-catchy tune "Yes! We have no bananas" dates from an earlier banana extinction scare in the 1920s. (Image from  NYPL .)

The still-catchy tune "Yes! We have no bananas" dates from an earlier banana extinction scare in the 1920s. (Image from NYPL.)

Have you heard? Bananas are going extinct!

Don't worry; this has happened before.

For the first half of the twentieth century, Americans were eating a different type of banana: the Gros Michel. (Fat Mike, to its friends.) Native to the Americas, Gros Michel was grown in massive plantations in Honduras, Costa Rica, and elsewhere in Central America, most of which were owned by a few huge companies. But by the 1950s, fungal diseases had ravaged production, destroying more than a hundred thousand acres of Central American banana plantations.

The Gros Michel was replaced by a banana of Asian origin, the Cavendish, which was resistant to the fungal blights that had wreaked havoc on its predecessor. Predictably, the story has now repeated itself. Intensive monoculture and the interconnectedness of global trade virtually assures the spread of pathogens, wrecking crops, devastating local banana economies. In the end, fungus always wins.

You may have also heard the persistent rumor that, banana to banana, the Gros Michel bested the Cavendish in every way. "Fifty years ago, we were eating better bananas," broods CNN. According to the somber assessments of these banana moralists, the Cavendish is blander, more boring, needs "artificial" ripening, is altogether more buttoned-up and tucked-in than the wilder, fruitier Fat Mike. 

There's another rumor: If you want a hint of what the Gros Michel tasted like, try a banana Laffy Taffy, or those little yellow banana candies, or any cheap banana-flavored thing. Fake banana flavor, the legend goes, is based on the Gros Michel.  There's some evidence that isoamyl acetate — banana ester, the characterizing component of "fake" banana flavors — was a more prominent note in the Gros Michel than it is in the Cavendish.

 Good old New England Confectionery Company chewy banana splits 

Good old New England Confectionery Company chewy banana splits 

"It's not that the fake banana flavor doesn’t taste like bananas, it’s that bananas don’t taste as flavorful as they used to," concludes a recent article about fake-banana-real-banana on foodandwine.com. 

So this is what we are left with: an apparitional Gros Michel. "Fake banana" flavor, a shabby memento of a better, more delicious banana that was wiped from the planet (or, at least, the export economy) by the hubris of industrial agriculture. Modernity always promises us better living, but meanwhile perpetrates these secret swaps, leaving us with mass-produced versions of nature: duller, dimmer, less.

Or at least this is a story that we like to tell ourselves — that the price we pay for living the way we do, allegedly unconstrained by nature, is that we are consequently denied our full measure of experience. As we pass into the future, we get worse and worse bananas.

But was "fake banana" flavor really "based" on the Gros Michel? Was the Gros Michel better? Is the fake inevitably an attenuation of the real? What is "real" banana flavor, anyways?

And could it even be possible that fake banana flavor came before real bananas?  

Let's not get ahead of ourselves. Let's begin with the bananas.

According to John Soluri, whose excellent Banana Cultures: Agriculture, Consumption, and Environmental Change in Honduras and the United States I'm drawing on here for most of these banana facts, prior to the 1850s, bananas were rare indeed in these United States.

And most Americans wouldn't get a taste of bananas until the 1876 Centennial Exhibition in Philadelphia, where the fruit, wrapped in foil and sold for a dime, drew gigantic crowds. At first, multiple varieties of bananas were available in US markets, red and yellow, but by the 1890s, one banana reigns supreme: the Gros Michel.

 Stereogram of banana trees on display at the 1876 Philadelphia Centennial Exhibition.

Stereogram of banana trees on display at the 1876 Philadelphia Centennial Exhibition.

There are many reasons that Gros Michel became the top banana. Superior taste was by no means the main factor here. (After all, prior to a consumer market in bananas, how can we know what people believe the best-tasting banana to be?) In fact, the features that put Gros Michel squarely on top had to do with logistics — the logistics of getting bananas from Central America to U.S. ports and then to markets in the late nineteenth and early twentieth centuries, i.e., by train and by boat.

Gros Michel were thick-skinned, resistant to bruising. A bunch of Gros Michel bananas tended to include more "hands" (that's the term of individual bananas) than other varietals, and those bunches basically packed themselves: the hands grew tight and symmetrical, perfect for tossing straight into a ship's cargo hold. The bananas were thick-skinned, resistant to bruising, and had a long ripening period, and grocers appreciated their attractive, unblemished bright yellow appearance. Basically, Gros Michel bananas were born to be shipped.

By the 1890s, most bunches of banana entering the U.S. were yellow Gros Michel bananas, "the variety around which late-nineteenth-century consumer markets formed their notions about just what constituted a 'banana,'" according to Soluri.

 This 1917 photograph by Lewis Hine shows a boy peddling bananas in Boston.  Image courtesy Library of Congress.

This 1917 photograph by Lewis Hine shows a boy peddling bananas in Boston. Image courtesy Library of Congress.

And so, in 1912, when Clemens Kleber, head chemist for the flavor and fragrance firm Fritzsche Brothers, set out to determine which chemicals in bananas were responsible for their flavor, the bananas that he used in his New Jersey research laboratory were, almost certainly, Gros Michel.

After ripening, mashing, distilling, and variously analyzing his banana mush, Kleber managed to isolate a quantity of an oily, odorous, neutral liquid, which he identified as amyl acetate.

[Note/plea to chemists: I know that isoamyl acetate and amyl acetate are different molecules. But I've found references that indicate that this difference was less significant to nineteenth-century and early-twentieth century chemists. For instance, this 1894 chemical dictionary presents the two as synonymous. Not being a chemist, I don't quite know what to make of this. What difference does the difference between these two molecules make? In what processes, reactions, and applications are they not interchangeable?] 

 Milt Gross, pioneering cartoonist, illustrating the real meaning of "banana oil!" (ie, bullshit.)

Milt Gross, pioneering cartoonist, illustrating the real meaning of "banana oil!" (ie, bullshit.)

Kleber's motive for studying the chemical constituents of banana was, in part, to challenge the principles of the 1906 Pure Food and Drug law, which required flavor extracts containing synthetic chemicals to be labeled as "imitation." But if the chemicals used in preparing a synthetic flavor were the same as those present in the actual fruit, how could regulatory officials tell the difference? And why should labels impose a difference that did not exist (according to Kleber) on the molecular level? "As the evidence that substances identical with the so called artificial fruit ethers are also present in natural fruit flavors is of considerable importance in reference to the various pure food laws, I intend to make further researches about the composition of other natural fruit flavors," he vowed, in the December 1912 article where he described his banana research, continuing "It is, however, by no means my intention to monopolize this field of research" — and he certainly appears not to, as he never published anything of the sort again.

As was the case with methyl anthranilate and grape flavor, the reason that amyl acetate was used as banana flavor is not because chemists already knew that it as a banana-native substance. In fact, in order to really understand where artificial banana flavor comes from, you have to start with artificial pear. Because amyl acetate — produced from fusel oil, a waste product of alcohol distilling, and one of the very first synthetic chemicals used as an artificial flavor -- initially came to prominence as a pear flavoring.

Pear drops — barley sugar flavored with amyl acetate diluted in alcohol — were one of the new confections available at the 1851 Crystal Palace exhibition in London. The drops and the chemical used to flavor them drew the attention of August Hofmann, the distinguished chemist who was one of the judges of the exhibition. In a letter to Justus Liebig, his teacher, he noted the "remarkably fruity odor" of amyl acetate, and the "agreeable odour of the Jargonelle pear" that emerged when it was diluted in alcohol. Upon inquiry, he learned that "tolerably large quantities" of amyl acetate were being manufactured. "It is principally used for flavoring pear drops, which are much admired in England."

Jargonelle pears are an early-ripening pear common in Great Britain, but (it seems) relatively rare in the United States. And pear drop candies are also more common across the pond. According to Wikipedia, "A 2009 survey of 4,000 adults found that pear drops were the fourteenth most popular sweet in the United Kingdom."

Chemical catalogs from the 1850s through 1880s often refer to amyl acetate as "pear oil" or "jargonelle pear essence." But as the twentieth century nears, in the United States, the chemical is increasingly referred to as "banana oil," not only in flavor and fragrance raw material catalogs, but also in materials that refer to amyl acetate's other uses (especially as a paint thinner or varnish remover.)

So this is the story I originally wanted to tell here. I wanted to show that amyl acetate first signified the flavor of pears — was tagged, specifically, to jargonelle pears — then, in the United States, came to signify the flavor of bananas. I wanted to use this to show that our association between a sensory experience produced by a chemical and a particular real-world referent is historical, contingent, socially constructed. What amyl acetate reminds you of depends on your experiences and your frame of reference. 

I wanted to tell that story, but then I dug a little deeper, and I discovered that the historical record doesn't support that hypothesis as tidily as I'd hoped. The past is a messy place! And a more interesting place than we perhaps imagine.

Working on a draft of my first chapter, I was reviewing a handful of notices from the early 1850s advertising "fruit essences," ie artificial fruit flavors, in Philadelphia, New York, and Boston newspapers.  

And I was surprised — shocked, even — to find "banana" listed among the flavors offered, as early as 1855. Looking closer, it seems that banana flavor was present at the Crystal Palace as well. Scientific American, in its 1853 review of the exhibition's highlights, featured an account of the new artificial fruit essences, and claimed that the most common flavors at the exhibition were pineapple and banana. (Is it any accident that, in contrast to the other available flavors — jargonelle pear, greengage plum, apple — these are both "exotic" fruits, fruits we can assume many of the visitors to the exhibition had never had the opportunity to taste in the flesh?)

What comprised banana essence? The earliest formula I've found dates from 1859, from an important American textbook for pharmacists, which describes the composition of some of the "most prominent" commercially available artificial flavors. "Banana essence" is there described as a mixture of amyl acetate and "some" butyric ether, diluted in alcohol. (The book gives the formula for jargonelle pear as amyl acetate, diluted in alcohol. I should also note here that amyl acetate was a component of many synthetic fruit flavors in this period, not just pear and banana.)

Edward Kent, a manufacturer, importer, and dealer of chemicals and other chemical supplies, lists amyl acetate alternately as "Banana Essence" in his 1854 catalogue.  But another New York chemical supply dealer, J.F. Luhme, lists amyl acetate as "pear oil" in a catalogue from the same period. What accounts for the difference? I'm not certain. However, while Luhme was only an importer, Kent was also a manufacturer -- ie, his company was making some of these substances in-house. Could a (relatively?) greater banana-consciousness in the U.S. at the time summon that fruit first to mind, prior to the pear?   

 Image from a chemistry textbook from 1860, published in Philadelphia, that associates amyl acetate with banana, not jargonelle pear. Digitized by  Googlebooks .

Image from a chemistry textbook from 1860, published in Philadelphia, that associates amyl acetate with banana, not jargonelle pear. Digitized by Googlebooks.

In 1879, an article in a Canadian pharmaceutical journal reprinting Kletzinsky's flavor formulas makes an addition: "essence of banana," a flavor absent from Kletzinsky's table, but "much employed in the United States." The author indicates that it usually comprises equal parts of amyl acetate and ethyl butyrate, combined with five parts of alcohol.   

So what arrived first to the American sensorium, banana flavor or bananas? Most people writing about the history of bananas in the US seem to agree that the fruit is rather rare and precious prior to the late 1870s. It seems that amyl-acetate-based banana flavor had a peak in popularity that anticipated or slightly preceded the widespread availability of Gros Michel bananas. Perhaps the presence of banana flavors in confections, beverages, and candies conditioned Americans to expect certain sensory qualities when it came to the taste of bananas, familiarized them with certain aspects of banana flavorness that they then were able to find and confirm in the Gros Michel.  

Because of course, multiple chemicals contribute to the flavor of bananas, whether Gros Michel, Cavendish, or any of the hundreds of other banana varietals — green, blue, red, pink, and yellow — that grow in bunches on this wonderful planet we seem on the verge of wrecking forever. And we learn to attend to certain sensations in the multiplicity of sensation, and to mark them as the significant ones — to recognize and know the flavor of banana in amyl acetate. In a certain manner of speaking we are always denied our full measure of experience, because perception is always selective; the sensations we attend to, and the meanings we attach to them, are shaped by our histories and the contexts in which we live.    

When making a banana flavor today, flavor chemists have access not only to a more exhaustive literature of the multiple chemicals that contribute to the flavor of bananas, but also to a far wider range of synthetic chemicals. But a "better" banana flavor is not always one that's more "real." Instead, flavorists build situational bananas, tailored to the food the flavor will be used in, the requirements of the market, and expectations and desires of consumers — also perhaps to something else, a different note, a new sensory idea. (If I've accomplished anything with this blog, I hope it's to shake up the belief that flavors should be bounded by some materialist, literal version of reality; or that questions of quality and pleasure can be settled by drawing a line between the "artificial" and the "genuine.")  

But seriously — how "real" is a banana, anyways? (I should probably take this opportunity to assure everyone that bananas aren't going extinct, though the identity of the "banana of commerce" may be revised.)

 Chiquita banana ad from 1970 that I found on the internet (and now can't find the source of), demonstrating the fruit's considerable potential as a cross-branding platform.

Chiquita banana ad from 1970 that I found on the internet (and now can't find the source of), demonstrating the fruit's considerable potential as a cross-branding platform.

After all, the commercial banana shares many of the features that characterize the kind of food that we think of as industrial, mass-produced. Cheap and sweet, the banana was the first fresh fruit available for mass consumption in the U.S. that was available all year round. It's always banana season. The monocultural cultivation of a single banana varietal offers a kind of global uniformity reminiscent of Coca-Cola or Oreos.  Bananas even come in their own packages, with surfaces susceptible to brand names, logos, and other inducements.

I want to end here by invoking one final role played by the banana in the early twentieth-century. T.H. Morgan's fruit fly lab at Columbia University is a crucial site in the history of science, the place where, at the beginning of the twentieth century, the foundations of modern genetics were laid.   

In Morgan's lab, the fruit fly, cheap, brief, and prolific, was made into a "living instrument" to sustain the argument, provide the proof, of the connection between genes and traits, the chromosomal theory of heredity.

And what sustained Morgan's flies? Bananas. Cheap, abundant, always available, bananas were the model food for the first model organism, the insect whose cells would be used to map out the patterns of genes, at the moment when genes first seemed to be the stuff that makes our selves. 

 Bananas hang in bunches in Thomas Hunt Morgan's fly room, Columbia University, c. 1920.

Bananas hang in bunches in Thomas Hunt Morgan's fly room, Columbia University, c. 1920.

Time flies like an arrow, fruit flies like a banana — and apparently, so do we. 

Addendum: The Masticating Ape

As summer winds down, I've been catching up on some old America's Test Kitchen podcasts, including one from June 6 that adds a little monkey business to my earlier musings on Soylent and chewless foods

cookingchimp.jpg

In the podcast, Christopher Kimball interviews Harvard primatologist Richard Wrangham about the substance of his 2009 book, Catching Fire: How Cooking Made Us Human. (You can listen to the podcast here; the interview starts at the 16-minute mark.)

I'm not super wise to the latest theories in human evolution, but apparently the conventional argument is that meat-eating is key to explaining the emergence of modern humans. Wrangham argues that the shift to eating meat could not have occurred without cooking. Cooking is what makes the hunter-gatherer lifestyle possible, and all the things that go with it: bigger brains, gendered social structures, culture. A key part of his argument rests on the relationship between cooking and chewing.

 Lucy taking a break from chewing, apparently.

Lucy taking a break from chewing, apparently.

According to Wrangham, chimpanzees typically spend six hours a day chewing, and then another couple of hours in a post-prandial lull, digesting. It's not just the actual procurement of food that requires energy, it's the consumption and assimilation of it. All that raw plant matter has to be broken down by time, effort, and big guts. You can see the evidence of this in the anatomy of our plant-eating Australopithecene ancestors (hi, Lucy!): they have great big jaws, big teeth, and big guts.

On the other hand, modern adult humans spend less than an hour a day chewing – a figure that remains consistent, Wrangham says, despite regional, cultural, and economic differences. Unlike our Australopithecene forebears and our living primate relatives, we have relatively small guts, like carnivores, and relatively large and fuel-hungry brains. This anatomical shift is in evidence about two million years ago, with the emergence of another of our ancestors, a species we call Homo erectus.   

Homo erectus had small guts, like a carnivore, but did not have sharp carnivore-like teeth to tear meat off bones and consume it raw. Moreover, although meat was important to the Homo erectus diet, it would not have been consistently available year-round. But if Homo erectus meals varied seasonally between being meat-dominant and plant dominant, their small guts and small jaws would not have been sufficient to the task of effectively extracting a sustainable number of calories from plant matter.

Wrangham argues that cooking resolves these puzzles.  Cooking changes the material and chemical properties of food, which has two evolutionary advantages: it makes food softer, meaning that less time needs to be spent chewing and digesting, and it denatures proteins and breaks apart chemical bonds, making more calories and nutrients biologically available.

The days of our lives are numbered, as are the hours in each day. Less time spent chewing leaves "more time for other things – going to war, gamboling under a tree, writing poetry."   

To illustrate the increased caloric payload of cooked food, Wrangham describes an experiment with rats. One group of rats was fed hard pellets, the other group was fed the same pellets that had been aerated to make them soft and tender. Both groups of rats technically ate the same number of calories, but the rats eating soft pellets had 30 to 40 percent more body fat. (The correlation between softer foods and bigger bodies has also been observed in humans, and is cited as one of the possible explanations for increasing levels of obesity in the developed world.) 

Cooking was essential to the emergence of hunter-gatherer cultures because it indemnified against the inherent risks of hunting. Chimpanzees "love meat," Wrangham says, but rarely eat it, and only spend about twenty minutes a day hunting. Why? Because if they go out hunting all day, and fail, there is no way to make up that day's caloric deficit – there aren't enough hours in the day to hunt, fail, and chew leaves for six hours. Cooking meant that humans (men, according to this theory) could venture out and hunt all day, and even if they failed, they would still be able to consume and assimilate enough calories (dished out by women, or whoever else stayed near home base) to make up for the loss. 

For Wrangham, cooking is not only key to understanding the evolutionary history of the human species, it is also a uniquely human technology: harnessing external energy sources to improve and enhance the energy-providing qualities of food. Instead of using only our own biological, bodily resources and processes (chewing, digesting) to extract the energy and nutrients from food, cooking takes over some of the work that our hominid ancestors did with their gnashing teeth and their churning guts. 

So perhaps chewless foods – like Soylent, or like those Hugo Gernsbach imagined in Ralph – are a brave new stage in evolutionary history, and perhaps our descendants will only use their dainty teeth as ornaments and mementos of a chewier, tougher to swallow, past.

Keep it Fresh, Keep it Real, Orange Juice

We don't tend to think of freshness as a flavor, at least not in the same way that we think of "orange" or "vanilla" as flavors. "Freshness" is supposed to indicate something about a thing's material condition, its temporality: its recentness to the world and to us. The life history of a fresh food is assumed to be reassuringly direct: there were few intermediaries, few machines intervening, as it made its way to us. Fresh foods are also by definition not stable -- nothing can be fresh forever -- and so always at risk of becoming not-fresh, stagnant, rotten, stale.

There's something uncanny about a fresh-seeming food that is really an old food -- like the changeless McDonald's hamburger in Supersize Me, or those legendary Twinkies from decades ago, still plump and gleaming in their wrappers -- something reflexively repulsive. It brings to mind succubus myths, old women who make themselves appear young and nubile to seduce enchanted knights. Those stories certainly deserve some full-strength feminist revisionizing, yet remain among the purest expressions of the grotesque in our culture.

At the turn of the 20th century, one of progressive reformers' most potent accusations against food manufacturers was that they hired chemists to rehabilitate and deodorize rotten meat and rancid butter, to restore them to the appearance of freshness. This is a deceptive practice -- akin to running back the odometer on a used car -- but pure food advocates also largely opposed chemical preservatives, which didn't run back the meter so much as slow its rate of progress. Part of their opposition came from the claim that these chemical additives were harmful, but I think some of the horror of it was that preservatives made the question of freshness beside the point. Some foods were fraudulent by passing themselves off as something they weren't: margarine for butter, glucose for maple syrup. What chemical preservatives were doing was faking freshness.  

The problem isn't so much that the food is rotten or dangerous, but that you can't tell the difference between fresh and not-fresh, and that difference matters to us. Time changes food; and food unchanged by time seems somehow removed from the natural world, indigestible.

Yet why does freshness matter so much? (We don't always favor new-to-the-world foods, of course. Sometimes time increases value: think of old wines, caves of teeming cheeses, dry-aged beef, century eggs).

What we call freshness is not an inherent condition of a food, but an interpretive effect. We read it from cues including color, taste, aroma, texture, as well as the contexts of consumption. This is what I'm arguing here: freshness is a cultural or social category, not a natural one.

As a case in point, consider the story of store-bought "fresh-squeezed Orange Juice," as described in the April 2014 Cook's Illustrated feature somewhat luridly titled:

The Truth About Orange Juice

Is the sunny image of our favorite breakfast juice actually just pulp fiction?

Cook's Illustrated -- one of my all-time favorite magazines, by the way -- assembled a panel of tasters to evaluate various brands of supermarket orange juice. With the exception of two low-cal samples, all the juices list only one ingredient on the label -- orange juice.

Nonetheless, as Hannah Crowley, the article's author, extensively illustrates, orange juice is a processed food: blended from different oranges, pasteurized, packaged, shipped across continents or over oceans, and required to remain shelf-stable and "fresh tasting," at least until its expiration date. Orange season in the US lasts three months. But we want orange juice all year long.

Part of the challenge of producing commercial name-brand OJ is consistency. How do you get each container of Minute Maid to taste the same as every other container, everywhere in the world, in May or in October? Coca-Cola, the corporate parent of Minute Maid and Simply Orange, uses a set of algorithms known as "Black Book" to monitor and manage production. As an article last year in Bloomberg Businessweek put it: "juice production is full of variables, from weather to regional consumer preference, and Coke is trying to manage each from grove to glass." In all, Black Book crunches more than "one quintillion" variables to "consistently deliver the optimal blend," the system's author told Bloomberg, "despite the whims of Mother Nature."

Sure, but how do you reproduce the experience of freshness? Preservation is not enough. In fact, the means used by OJ producers to arrest decay and rancidity in order to allow them to "consistently deliver" that optimal blend -- pasteurization and deaeration -- actually alter the chemical profile of the juice, in ways that makes it taste less fresh. Pasteurization can produce a kind of "cooked" flavor; deaeration (which removes oxygen) also removes flavor compounds.

Freshness is an effect that is deliberately produced by professional "blend technicians," who monitor each batch, balance sweetness and acidity, and add "flavor packs" to create the desired flavor profile in the finished juice.  Flavor packs are described by Cook's Illustrated as "highly engineered additives... made from essential orange flavor volatiles that have been harvested from the fruit and its skin and then chemically reassembled by scientists at leading fragrance companies: Givaudan, Firmenich, and International Flavors and Fragrances, which make perfume for the likes of Dior, Justin Bieber, and Taylor Swift." The only ingredient on the label of orange juice is orange juice, because the chemicals in flavor packs are derived from oranges and nothing but oranges. Yet orange juice production also has something to do with the same bodies of knowledge and labor that made "Wonderstruck" by Taylor Swift possible. (There are in fact multiple class-action suits alleging that the all-natural claim on orange juice labels is inaccurate and misleading.)

In other words, this isn't just about "adding back" what has been unfortunately but inevitably lost in processing, restoring the missing parts to once again make the whole. The vats of OJ, in a sense, become the occasion for the orchestration of new kinds of orange juice flavors, that conform not to what is common or typical in "natural fresh-squeezed orange juice" (whatever that may be), but to what we imagine or desire when we think about freshness and orange juice. As Cook's Illustrated puts it: "what we learned is that the makers of our top-ranking juices did a better job of figuring out and executing the exact flavor profile that consumers wanted." These flavors don't reproduce nature; they reproduce our desires. But how do consumers know what they want, exactly, and how do manufacturers figure out what this is?  

I can't really answer either of those questions now, but I think one of the consequences is a kind of intensification of the flavor dimension of things. Consider: consumers in different places want different things when it comes to OJ. Consumers the US, according to Cook's Illustrated, especially value the flavor of freshness. One of the volatile compounds present in fresh orange juice is ethyl butyrate, a highly volatile compound that evaporates rapidly and thus is correlated with the newness of the OJ to the world, so to speak. Simply Orange, Minute Maid, and Florida's Natural juices -- all juices "recommended" by the Cook's Illustrated tasting panel -- contained between 3.22 and 4.92 mg/liter of ethyl butyrate. But juice that's actually been squeezed at this moment from a heap of oranges contains about 1.19 mg/l of ethyl butyrate. The equation here is not as simple as ethyl butyrate = fresh flavor, so more ethyl butyrate = megafresh flavor. (One of the exception on the panel's recommendations - an OJ with an ethyl butyrate content more in line with that of fresh-squeezed juice - was actually produced in a way that permitted seasonal variations, was not deaerated, had a much shorter shelf life, and depended on overnight shipping to make its way to stores.) But there is a kind of ramping up, somehow, that seems to both correlate with our desires and recalibrate them.


The Bird Climate

Earlier this week, The New York Times reported on eBird, a network of bird observers using smartphones to collaborate on the vast project of making a global picture of bird populations. Launched in 2002 by the venerable Cornell Lab of Ornithology, the network has already compiled nearly 150 million reports of bird sightings, and the amount of data it receives each year continues to grow. Poignantly, eBird is also promoted as a way to prevent the diligent observations of disaggregated bird-watchers from being lost -- to science and, by extension, to eternity. 

Dr. John W. Fitzpatrick, director of the Cornell Lab of Ornithology, comments on this in the article:  

“People for generations have been accumulating an enormous amount of information about where birds are and have been.... Then it got burned when they died.”       

The eBird network saves this information from the fire, so to speak, by converting it into data - accumulated, centralized, and brought into sensible communion with other data.

The dynamics of this data, the constant addition of new information about bird sightings, and the scope of the eBird database distinguish it from previous efforts, such as the Audubon Christmas Day Bird Count, which also organized amateur birders, bird lovers, and pro ornithologists (initially in the Northeastern US, later across the North America) for a one-day extravaganza of bird watching, identifying, and tallying. In contrast to this "static" one-day count of these moving objects, what eBird makes possible is a conception of birds as a phenomenon like climate -- global, interconnected, dynamic. If the Audubon Christmas Bird Count is the local bird weather report in various locations on a particular day of the year, eBird is the global bird climate: the patterns and moving fronts, with concomitant capacity to make predictions about future local bird weather. The scientists who use the program even call their records of particular species a "heatmap." 

The birders who participate in eBird aren't just ordinary birders, they are -- in eBird's words -- "biological sensors," nodes in a technosocial network to produce knowledge of the bird climate.

But as in any case where bodies and machines come together, there are ticklish issues at the interface. Though humans may be the best bird detectors, they lack some of the qualities of machine parts: consistency, reliability, regularity, standardization. And so the biological sensors' information, entered via the eBird smartphone app, has to filter through other humans - the Cornell Lab of Ornithology - to be sanctified as data. The information has to pass through the experts. These experts may also avail themselves of machines: the Times reports that eBird's creators are trying to make up for the variations among its biological sensors by using "machine learning" to "train" their program to distinguish signal from noise, to flag and discredit false or misreported or misidentified sightings. And they are also curbing bad data the old-fashioned way: by sending scientists out to refine the capacities of the biological sensors, training non-scientist eBird users to make the correct calls.

One thing the article gets a bit wrong: the Times article claims that prior to eBird, one-day counts were the only source of information about bird populations. The archetypal example of this is the Audubon Christmas Day Bird Count, which began in 1900. I'd also argue that bird banding, which was first used as a scientific method of tracking birds around the same time the Bird Count began, is another major source of information about bird populations, migration, and behavior. It's no coincidence that both the bird count and bird banding appeared at a similar time. If bird migration had long been a phenomenon of scientific interest, at the turn of the twentieth century, organized networks of ornithological observers (proto-eBird) affiliated with institutions like natural history museums, national governments, or conservation groups, made viable the vast data collection project entailed by the study of migration.

 Illustration of birds dead on the pavilion below the Statue of Liberty's torch, from  Duluth Daily News , November 8, 1887

Illustration of birds dead on the pavilion below the Statue of Liberty's torch, from Duluth Daily News, November 8, 1887

There's yet another, lesser-known, source of information about migration that was also used at this time: birds that collided with human-built structures. The Statue of Liberty's electric torch first blazed in 1887; the statue of William Penn which crowned Philadelphia's city hall (briefly, the world's tallest building) was floodlit in 1898. Under certain weather conditions -- drizzle, low cloud cover -- hundreds of migratory birds were killed on certain nights in collisions with these or similar structures, other monumental electric-lit structures in the still largely gas-lit city. As one 19th-century article describing the avian casualties at the Statue of Liberty put it, these "victims of liberty and their love of light."

Moreover, these were not urban birds - sparrows and pigeons - they were migratory birds passing along ancestral flyways, forest dwellers and waterbirds rarely seen in the city's vicinity.

What happened to the bodies of these birds? 

At a time when feathers for ladies' hats were a hot commodity, these bodies could have been plundered for their valuable plumes. Colonel Augustus Tassin, who was in charge of the Statue of Liberty grounds, did not allow this to occur. He told a newspaper reporter in 1887:   

“I have heretofore received many letters from all sorts of people offering to buy the birds which were killed in this way. But I believed they were public property, and that I had no right to dispose of them.... When I have collected about 200 specimens, I send them to the Washington National Museum, the Smithsonian Institution, and other scientific institutions, where I know that they are wanted.”

Indeed, the Smithsonian's 1888 Annual Report records the receipt of 260 birds of 40 species "in the flesh" from Tassin, recognized as one of the "more important accessions during the year." Government regulations required Tassin to record data about avian fatalities at the Statue of Liberty, which was technically a lighthouse and thus subject to this requirement. But the practice of scientific collecting at bird collision sites was adopted at other late 19th- and early 20th-century urban civic sites that saw similar mass fatalities.

The tale thus becomes a sort of redemption narrative, a conversion of meaningless death to meaningful data – and reclaiming the specimens as public, scientific property rather than private commodities.  

Further, the data produced by bird collisions had certain advantages over information from bird sightings during migration. What you had were the real bodies of birds, material specimens. This allowed ornithologists to make note of things that a sighting cannot provide a clue to: the bird's final meal, its sex, its approximate age, its weight. At the turn of the 20th century -- a time when the issue of "scientific collecting" (killing birds for research) was drawing sharp scrutiny and criticism from emergent conservationist groups like the Audubon Society -- bird collisions provided specimens that illuminated the phenomenon of migration while evading the question of whether killing wildlife was justifiable on scientific grounds.

This practice continues to this day. Birds that die after colliding with buildings in New York, in Chicago, in Philadelphia, and other urban areas are collected by bird collision monitors, bagged and tagged and incorporated into natural history collections and also used to raise awareness about the vast fatal scope of glass and architecture on bird life in, above, and around cities and other places where people live and build shiny or disorienting things. (Not every collision is fatal; many of these groups also save and rehabilitate wounded birds.)

Which brings me back to Dr. Fitzgerald's quote at the beginning of this post, that the collection of data is a way to prevent loss, to stave off the fire of oblivion.

Bird specimens lead productive afterlives in natural history collections, and continue to yield information about population genetics, historical ecology, behavior, and physiology, among other things. But making a bird a specimen entails loss - things that are discarded in the process of bringing the bird's body into conformity with the other bodies in the regimented drawers in the back rooms of natural history museums. Likewise, eBird certainly allows the birdwatcher to give her or his observations a rich and productive afterlife. But that shouldn't stop us from asking: what might be lost here? What does not pass into the eBird data set? And does that absence matter?